Razor Clams in the Northeast
life history, fishery, research

Dale Leavitt, Diane Murphy, Josh Reitsma, and Abigail Archer
Razor Clams

Life history and other considerations

- Species description
- Preferred habitat
- Population characteristics
- Food
- Growth
- Predation & Disease
- Behavior
- Fishery/Regs
- Research
Species Description

- Most information on razor clams in NA published at turn of 20th of the century!
- Filter-feeding bivalve mollusk
- Occur naturally in the Western Atlantic (*Ensis directus*)
 - from Labrador through South Carolina
- Common names
 - straight razor clam
 - jackknife clam
- Size up to about 10” in length
 - usually about 6X longer than width
 - narrow, elongate shape resembles old-fashioned barber’s straight edge razor
 - maximum size for the razor clams approaches 20cm (7.8”) over a life span estimated at 7-8 years
- Shells glossy brown with a purple region near the curving edge
 - shells are covered with elastic cuticle (*periostracum*)
 - readily sheds sediment and overlaps the valve margins to protect the mantle
Species Description

- The short siphons are mostly round and separate
 - many sensory tentacles surrounding the area
 - siphons leave characteristic keyhole shape

- Most distinctive anatomical feature is the large muscular foot that extends from the anterior end of the clam
 - surrounded by a thick collar of mantle tissue

- Foot is capable of extending to approximately one-half of the total body length
 - combination of foot and mantle collar is responsible for the unique capabilities of the razor clam to dig, jump and swim
Species Description

- **Sexes are separate**
 - gonadal tissue integrated into their visceral mass
 - eggs are fertilized externally during spawning, which is often in June

- **Available data indicate fairly rapid growth in favorable conditions**
 - quite rapid in the hatchery and nursery
 - from 0.5mm/day in the early stages
 - upwards of 0.3mm/day in growout cages

- **Cold water species, *E. directus*, observed spawning in March-April in the North Sea, early June in Canada**

- **Following a large synchronized spring spawning, a continuous low level of larvae can be detected in the water column through much of the summer**
Species Description

- Razor clam spawning and larval development follows normal molluscan stages
 - setting occurs between 10 days and 3 weeks, depending on ambient temperatures
- A unique behavior in post-set razor clams is their capacity to migrate following setting
 - juvenile razor clams, up to 10mm in length, have been observed swimming at the water surface in subtidal areas, suggesting that the small stage is highly mobile
- Small post-set razor clams have been observed larger-scale migrations through “byssal drifting”
 - by an attached byssal thread, small razor clams can move with the coastal water currents due to the drag on the byssal “sail”
 - behavior is thought to have led to the rapid expansion of the introduced American razor clam across northern Europe
Razor Clam habitat

- low intertidal to subtidal
 - primarily low subtidal areas (below mean low water) and in subtidal areas to about 20 m water depth
 - has been reported in depths to 100 m
- prefer sandy substrates
 - fine to medium sand – can be muddy sand if without silt
 - can be found in mud & gravel
- can live in unstable sand and tolerate dynamic areas
- prefers areas with moderate water flow
Population characteristics

Stocking densities:

- Luczak et al. (1993) observed recruitment of 30,000 ind/m² that dropped to 10,000 within two weeks.
- Densities of juveniles recorded at 2,000/m² (~200/ft²) in Chesapeake Bay
 - Low over-winter survival
- Final density of 4-6/m² (<1/ft²)
Food & Growth

- Suspension feeder and doesn’t seem to feed on detritus
- Well-adapted for living in soft tidal substrates
 - short siphons – burrows just below the surface to feed
- Growth – data derived from studies in the North Sea

Fig. 1. Mean shell length of *Ensis directus* collected on tidal flats in the Wadden Sea near Langeness (F.R.G.), in February 1984 (all samples together). For comparison the Von Bertalanffy growth curves are also drawn for shells from the North Sea, off Sylt (1) and off Blåvandshuk (2) (Mühlenhardt, Siegel et al., 1983)
Predation

- There are a number of common bivalve predators that will eat razor clams if given the opportunity, including:
Predators

- **The usual cast of characters**

Fig. F. *TAUTOGA ONITIS*, TAUROG (=blackfish)

Fig. H. *CEREBRATULUS LACTEUS*, RIBBON WORM

Fig. A. *NEVERITA DUPLICATA* (=Polinices d.), SHARK EYE

Fig. B. *EUSPIRA HEROS* (=Lanatia h., =Polinices h.), NORTHERN MOONSNAIL

Fig. H. *HAEMATOPOUS PALLIATUS*, AMERICAN OYSTERCATCHER
Disease

No observed diseases in western Atlantic, but...

- West coast razor clam (*Siliqua spp.*) populations routinely devastated by NIX
 - Nuclear Inclusion X
 - rickettsia-like organism
 - primarily affects epithelial cells of the gills
- In Holland in 1994, researchers observed a large crash of the *Ensis* population without an explanation, no pathology done!
Behavior

Razor clams are very unique bivalves with respect to their mobility.

Often found sticking above sediment surface 25 to 50mm but can dig swiftly and relocate up to 1 meter depth

Muscular foot & thickened mantle structure endows them with unique ability for movement
Behavior

Razor clams are very unique bivalves with respect to their mobility.

- They dig, swim & jump!
- Foot is larger and more agile than other clams
- Pushes narrow foot down deep into the substrate, then expands foot as an anchor and pulls the body and shell deeper into the sand
 - Extends tapered end of foot into sand and flare tip – serving as an anchor pulling the slim shaped clam deep below
 - As foot retracts water is forced out and fluidizes sand at the leading edge, easing its downward progress
Digging in
Behavior

Razor clams are very unique bivalves with respect to their mobility.

- They dig
- They move on the surface
- They swim
 - Swimming similar to digging – rapidly retract foot while pressurized water escapes around base of the foot = propulsion
- They jump
 - Curl foot under their body and rapidly retract causing ‘jumping’ movement
Razor clam fishery

- Harvesting methods
 - Spearing
 - Dry digging
 - Pumping
 - Method of choice for harvesting is “salting”
<table>
<thead>
<tr>
<th>Town</th>
<th>REGS</th>
<th>Size"</th>
<th>Comm/Day</th>
<th>Comm/Week</th>
<th>Rec/Day</th>
<th>Rec/Week</th>
<th>Family/Day</th>
<th>Family/Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnstable</td>
<td>Yes</td>
<td>no size</td>
<td>40 QT</td>
<td></td>
<td></td>
<td>10 QT</td>
<td>10 QT</td>
<td></td>
</tr>
<tr>
<td>Bourne</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chatham</td>
<td>Yes</td>
<td>4.5</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>12 QT</td>
<td>12 QT</td>
<td></td>
</tr>
<tr>
<td>Dennis</td>
<td>Yes</td>
<td>5</td>
<td>80 QT</td>
<td>480 QT</td>
<td>10 QT</td>
<td>10 QT</td>
<td>10 QT</td>
<td>10 QT</td>
</tr>
<tr>
<td>Edgartown</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harwich</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mashpee</td>
<td>Yes</td>
<td>2</td>
<td>40 QT</td>
<td></td>
<td>10 QT</td>
<td></td>
<td>10 QT</td>
<td></td>
</tr>
<tr>
<td>Mattapoisett</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newbury</td>
<td>Yes</td>
<td>5</td>
<td>10 QT</td>
<td>30 QT</td>
<td>10 QT</td>
<td>30 QT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provincetown</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tisbury</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truro</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wareham</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westport</td>
<td>No regs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Razor Clam Harvest Regulations

<table>
<thead>
<tr>
<th>Town or State</th>
<th>Razor Clam Season</th>
<th>Harvest Methods Permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatham</td>
<td>N/A</td>
<td>Clam rakes, salting</td>
</tr>
</tbody>
</table>

NOTE:

(A) The harvesting of razor clams and sea clams by salting (see 104 B. 25) is allowable provided there are no other species (such as soft-shelled clams or quahogs) within the inter-tidal zone of a given area. Areas of mixed species will be assessed and determined in the sole and unfettered discretion of the Shellfish Constable.

(B) The taking of any other shellfish by this method is prohibited.

(C) Dry salting (salt not in a water solution) or broadcast salting (spreading dry salt over a tidal flat) is prohibited. Also: defines "salting as:

- Salting" means a saline solution derived solely from table salt and water used to harvest razor clams and sea clams.

<table>
<thead>
<tr>
<th>Newbury</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

NOTE:

(A) Commercial clammers limited to only 1 tide/day - their choice. 10-QT containers only - no bags.

(B) Clam flats closed Sundays May 1 to Oct 1st.

<table>
<thead>
<tr>
<th>Mashpee</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

NOTE:

(A) Shellfish may be taken by hand, short-handled clam rake, hand trowel (garden variety), spade fork, plunger, dip net, scratcher or "potato rake", basket rake or bull rake, or scallop drags.

(B) None are harvested. There are only a few on sand flats just inside the bays.

<table>
<thead>
<tr>
<th>Barnstable</th>
<th>N/A</th>
<th>digging, salting</th>
</tr>
</thead>
</table>

Southside

- 11/1 - 5/31 Mon-Sat
- 6/1 - 10/31 Mon-Fri

- Harvest method approved by Nat. Resources
- (salt should be safe, food grade)
- No dry digging, Southside

Northside

- No hydraulic, No hand plunger, Northside

- Year round
- Mon-Sat Northside

- Harvest method approved by Nat. Resources
- (salt should be safe, food grade)

<table>
<thead>
<tr>
<th>Dennis</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

- Year round
- RC harvest methods not in regulations

<table>
<thead>
<tr>
<th>NH</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

- No closed season
- Hand or handheld tools only
- Residents only

<table>
<thead>
<tr>
<th>NH</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

- No closed season
- Dredge blade/knife/manifold max 48"
- Licenses needed
- Monthly reporting required
Why diversify local shellfish culture opportunities?

- Oyster and quahog are the big TWO in northeast
 - Private culture and municipal fisheries enhancement/propagation

- What happens to your business if you should lose a crop due to disease or some other uncontrollable environmental change?

- What other options do we have?
 - Soft shell clam
 - Bay scallop
 - Surf clam
 - European oyster
But....

- The more options developed – the more opportunities created
 - to sustain viable business locally
 - to expand the aquaculture industry in the northeast
 - expand fisheries enhancement efforts
What about farming them?

What do we know about Razor Clams?

- Biology
 - Preferred habitat
 - Population characteristics
- Food
- Growth
- Predation & Disease
- Behavior
- Market
So....where do we stand?

Need to consider:

- **Lack of knowledge about species** – from basic biology to culture technology
- **Mobility** – have to contain clam from escaping via digging, crawling, and swimming
- **Predators/disease** – protection & prevention
- **Over-wintering mortality** – may be a function of tidal exposure
- **Poor shelf-life** – can they survive up to a week out of sediment?
NRAC funded project (Burt & Leavitt) – Started in 2001

Goal

- to provide an opportunity for the current shellfish culture industry to investigate, develop, and optimize the growout technology for a cultured razor clam

Specific objectives of the proposed work include:

- arrange with the participating commercial hatchery to spawn and raise larval/juvenile razor clams
- solicit ideas for technology to achieve razor clam grow-out from an array of commercial shellfish growers
- supply each of the six selected growers with razor clam seed and operating funds to construct and implement their concept of appropriate razor clam growout technology
- identify sources and track economic data on razor clam markets within the region
- analyze the data and project the overall benefits and limitations to the development of the razor clam as an alternate commercial aquaculture species in the northeast
Industry development of culture practices for the razor clam

The objectives of the NRAC project were:

- Worked with a commercial hatchery to produce juvenile (5mm) razor clams
- Provide growers with seed razor clams to experimentally culture using their best technology
- Monitor success of growing razor clams on each farm
- The grow out component of this work has continued at a small scale through funding from the Southeast Massachusetts Aquaculture Center (SEMAC) in their experimental farm program – Research Farm Network (RFN)
Hatchery Production:

- Worked with a commercial hatchery to produce juvenile (5mm) razor clams
 - Aquaculture Research Corporation, Dennis, MA
 - Broodstock from Duxbury Harbor & Nauset Marsh.
 - Spawned 4 million razor clam larvae
 - Larval rearing was similar to other cold water species
 - Survival poor through setting and nursery
 - Received app. 150,000 1 cm seed for upwelling in Yr 1
Hatchery Production – Yr 2:

- Collected broodstock
- Spawned at numerous hatcheries and elsewhere
Hatchery Production – Yr 2:

- Hatchery attempts in Yr 2 (3 different hatcheries – 5 attempts)
 - Spawn in Dec 2001
 - Succumb to *Vibrio* infection post-set
 - Spawn in Jan 2002
 - Succumb to *Vorticella* infestation post-set
 -Spawn in Jan 2002
 - Succumb to neglect due to illness of manager
 - Spawn in Feb 2002
 - Succumb to unknown factors
 - Spawn in Mar 2002
 - Slowly lost due to unknown reasons during post-set

- Same problems were repeated in Yr 3

- Bottom Line
 - No razor clam seed for Yrs 2 & 3 due to hatchery failure
 - Primarily at the early post-set stage
 - Setting on screens a problem?
Nursery Production:

- Razor clam juveniles performed very well in an upweller
 - If you can get them through the early post-set stage in the hatchery.
Nursery Production – Yr 1:

- Provide selected growers with seed razor clams to culture
 - 10–15,000 seed distributed to growers in September
 - Mean length: 19.45mm (+2.24)
Grow out

- Provide selected growers with funds to construct/develop their proposed culture technology
 - A variety of techniques were tested
 - Bottom netted raceways
 - Boarded raceways
 - Bottom tents
 - Floating trays
 - Bottom trays
 - Bottom cages
Grow out – Yr 1:

- Evaluate survival and growth in the various nursery systems
 - Survival
 - Ranges from 0 to greater than 100%!
 - Growth
 - Growth interval of app. 3 months
 - Grew from 20mm at beginning of September to 40-50mm by end of November
 - An average daily gain of 0.25 (+0.16) mm/d
Grow out – Yr 1:

Bottom trays in Edgartown Harbor, MV

Razor Clam Growth - Nursery

Valve length (MM) vs. Date (1-Sep-01 to 10-Dec-01)

- RC-02 - hoop tent @ low density
- RC-02 - hoop tent @ high density
- RC-04 - nursery tray
- RC-05a - clam tent
- RC-05b - boarded raceway
- RC-08b - boarded raceway
- RC-10 - bottom cage low
- RC-10 - bottom cage high
- RC-14 - clam netted raceway
- RC-15 - upweller @ low density
- RC-15 - upweller @ high density
- RC-15 - floating tray @ low density
- RC-15 - floating tray @ high density
- RC-15 - bottom tray w/ cover @ low density
- RC-15 - bottom tray uncovered @ low density
- RC-15 - bottom tray w/ cover @ high density
- RC-15 - bottom tray uncovered @ high density
- RC-16 - clam netted raceway
Grow out – Yr 2:

- Status of seed at the beginning of Yr 2
 - New Jersey (nursery box)
 - Seed arrived in poor condition and didn’t survive through nursery
 - Connecticut (bottom cage)
 - Doing well – alive & growing
 - Rhode Island (bottom clam net)
 - Lost seed during first summer due to emigration problem
 - Massachusetts - Barnstable (bottom nets)
 - Lost most immediately after deployment = emigration?
 - Massachusetts - Wellfleet (boarded raceway)
 - High survival, little emigration & good growth
 - Lost all 2-3 inch razors in intertidal raceways in August
 - Overheated?
 - Massachusetts - Martha’s Vineyard (upwellers, floating trays & bottom trays)
 - Alive and doing well
Grow out – Yr 2:

Bottom trays in Edgartown Harbor, MV

~3.4"

~2.5"
Comparative Razor Clam growth

- Most growth in Yr 2 comparable to Yr 1 wild razors
 - Exception: Edgartown Harbor bottom trays

![Diagram showing growth of razor clams over time with data points and lines indicating growth phases.]

Wild North Sea razor clams
SEMAC Study
Recent SEMAC Study

- Conditions to investigate
 - Sediment types
 - Sediment type preferences?
 - Effect of grain size?
 - Stocking/planting density
 - Optimal density?
 - Nursery containment systems
 - How to successfully contain a very mobile species?
Industry development of culture practices for the razor clam

Objectives of the SEMAC project:

- Built on prior work to culture *E. directus*
 - Proposed alternative species for shellfish growers in New England region
 - Potential to augment farm profitability

IF

- Ability to produce meaningful AND reliable supply to marketplace was developed
Broodstock Collection

Collected from Barnstable Harbor 5/8/2012
Average length ~5.5”, weight ~45g
Successful Hatchery Spawn - 2012

Broodstock
Collected 5/8/2012
Barnstable Harbor
Mean: ~5.5” and 45g

5 weeks old
Spawned 9 May 2012

2 Months old
Distribution of Seed

- July 12/13 seed 65 days old (4 – 11mm range, 7mm avg)
 - Participants (11)
 - Wellfleet, Falmouth(2), Wareham, Provincetown, Orleans, Eastham, Barnstable, Yarmouth, Rhode Island, (Chatham earlier)
Sand Treatments

- Barnstable Harbor
- Brewster – Cape Cod Bay
- Nauset Marsh

Play sand (Lowes)
Sand Treatments/Trays

<table>
<thead>
<tr>
<th>Starting size of razors</th>
<th>Length</th>
<th>Width</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.54</td>
<td>1.69</td>
<td>3.87</td>
</tr>
<tr>
<td>St. Dev.</td>
<td>1.36</td>
<td>0.25</td>
<td>0.57</td>
</tr>
<tr>
<td>Min</td>
<td>4.05</td>
<td>1.10</td>
<td>2.47</td>
</tr>
<tr>
<td>Max</td>
<td>9.47</td>
<td>4.68</td>
<td>5.08</td>
</tr>
</tbody>
</table>

4 treatments/sand sources
- 3 treatments of each
Other Sites – August 2012

Chatham – sand tray system

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Width</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>19.77</td>
<td>3.45</td>
<td>5.73</td>
</tr>
<tr>
<td>St. Dev.</td>
<td>2.52</td>
<td>0.34</td>
<td>0.37</td>
</tr>
<tr>
<td>Min</td>
<td>13.46</td>
<td>2.61</td>
<td>5.03</td>
</tr>
<tr>
<td>Max</td>
<td>24.71</td>
<td>4.17</td>
<td>6.33</td>
</tr>
</tbody>
</table>

Wareham – Floating Upweller

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Width</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>16.94</td>
<td>3.88</td>
<td>4.37</td>
</tr>
<tr>
<td>St. Dev.</td>
<td>1.89</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Min</td>
<td>13.84</td>
<td>3.18</td>
<td>3.66</td>
</tr>
<tr>
<td>Max</td>
<td>20.77</td>
<td>4.57</td>
<td>5.12</td>
</tr>
<tr>
<td>Date</td>
<td>Organization</td>
<td>Mean</td>
<td>StdDev</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>7/13/2012</td>
<td>RWU</td>
<td>6.15</td>
<td>1.46</td>
</tr>
<tr>
<td>8/15/2012</td>
<td>RWU</td>
<td>13.23</td>
<td>1.53</td>
</tr>
</tbody>
</table>
Growth – Length
After 1 month - from initial to mid-August 2012

- Significant effect of site on daily growth rate (DGR)
- Also different grow out methods
- Our site grew much slower
Sand Treatment Results
4 sand treatments - August

Least Squares Means

No significant effect of sand type on survival
- Barnstable better????

Percent Survival in Sand Treatments

- Barnstable: 77%
- Brewster: 46%
- Play Sand: 45%
- Eastham: 47%
Density Treatment

Transfer razors from 12 individual sand trays (4 treatments) in aerated tank to 4 sand trays all filled with Brewster beach sand.
Density Treatment

• 4 density treatments – August, 2012
 – Tray 1 = 2160, about 1500/sq ft
 – Tray 2 = 1893, about 1315/sq ft
 – Tray 3 = 5340, about 3700/sq ft
 – Tray 4 = 3530, about 2450/ sq ft
Density Treatment: Shell Length

Least Squares Means

- Significant effect of tray \((p = 0.000)\)
 - Lengths (mm) from November 2012
 - 110 days from initial deployment
 - 69 days post sand tray transfers
Density and Survival

- **Initial Stocking Density**
- **2 Month Survival**
- **Percent Survival**

<table>
<thead>
<tr>
<th>Tray</th>
<th>Number of Razor Clams</th>
<th>2 Month Survival</th>
<th>Percent Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray1</td>
<td>2160</td>
<td>373</td>
<td></td>
</tr>
<tr>
<td>Tray2</td>
<td>1893</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>Tray3</td>
<td>5340</td>
<td>1033</td>
<td></td>
</tr>
<tr>
<td>Tray4</td>
<td>3530</td>
<td>433</td>
<td></td>
</tr>
</tbody>
</table>

- **Tray1**
- **Tray2**
- **Tray3**
- **Tray4**

- **Density**
- **Survival**

- **Tray1**
- **Tray2**
- **Tray3**
- **Tray4**
Predation and Survival

- Initial Stocking Density
- 2 Month Survival
- Percent Survival

Number of Razor Clams

- Tray 1
- Tray 2
- Tray 3
- Tray 4

Percent Survival

- 0
- 5
- 10
- 15
- 20
- 25
Considerations

- **Seed Fragility**
 - Shells can’t close tightly
 - Vulnerable to external environment
 - NO fresh water
 - NO harsh handling/spraying

- **Sediment**
 - Early placement optimal
 - Sediment type may be important (NO mason’s sand/sharp sand)

- **Temperature considerations**
 - Vulnerable to high temps (intertidal exposure)

- **Mobility**
 - Can and will swim/dig/escape if unhappy with current environment
Considerations

- **Seed sources**
 - Availability of seed
 - Not often commercially spawned
 - Economic concerns for hatcheries
 - Issues inherent with novel or alternative species…unknowns

- **Marketing**
 - Identification of current or future markets
 - Supply and demand

- **Alternative species**
 - Unknowns
 - Site characteristics may dictate relative success/failures
 - No reliable template for success with new species
Recent Studies
Recent Razor Clam Project

- Proposal submitted by Rawson, Leavitt, Morse & Murphy in 2010 & funded by NRAC in 2011
 - Title: *Optimization of Hatchery & Culture Technology for Razor Clams*
- Goal:
 - Support the diversification of the shellfish culture industry in the NE
- Objectives:
 - Developing improved hatchery methods for the production of razor clam seed in order to provide commercial shellfish hatcheries with the means to produce a steady, reliable source of seed.
 - Identifying improvements in grow-out technology for the culture of razor clams and increase the industry’s interest in and acceptance of this alternative species.
 - Tracking the marketability of razor clams in regional and broader markets.
 - Communicating the progress and results of proposed work directly to industry partners and the industry at-large.
Chatham
Eastham – Nauset Marsh

- Site I

- Site II
Wellfleet and Yarmouth
Site Differences

Wellfleet - EGG Island
11-4-14
2014 razor clam seed

Yarmouth - Lewis Bay
11-13-14
2014 razor clam seed
Razor Clam Lengths Late August 2014

The diagram shows the average lengths and days deployed for different locations and growers. The locations include Chatham, Town of Chatham, Nauset I, Nauset II, and Wellfleet. The growers are represented by different symbols: Chatham - grower, Town of Chatham, Nauset - grower I, Nauset - grower II, and Wellfleet - grower. The average lengths are indicated by bars, and the days deployed are marked with an 'X'. Direct Field Plant Sites are indicated by a line connecting the symbols.
Razor Clam Average Lengths (mm)

Razor Clam Lengths
light bars = late Aug 2014
dark bars = late Nov 2014

Average Length (mm)

Chatham grower | Chatham Town | Nauset grower 1 | Nauset grower 2 | Wellfleet grower | Yarmouth grower
Our current state of knowledge

- **Hatchery stage**
 - Razors can be held and handled in a similar manner to surf clams and other “cold-water bivalves”
 - Spawning, larval culture and setting are straightforward and easy to accomplish

- **Nursery stage**
 - They grow like weeds (ADG >0.25mm/day)!!
 - Early post-set juveniles are highly susceptible to microbial problems when held in conventional downwellers
 - Require high maintenance with excessively clean rearing conditions
 - A quick and dirty experiment indicated that immediate planting in sediment may be a viable alternative to post-set downwelling (cannot be “sharp” sand).
Our current state of knowledge

- Growout stage
 - The growth rate is on a par with (and potentially better than) the growth of wild razors in the North Sea (the only growth data I could find!)
 - Preliminary data suggests that planting densities should be kept below 1,000/m² (~100/ft²)
 - Razors will grow through the winter under some conditions
 - Market size individuals (app. 4-inches) can be harvested in two growing seasons following “field-planting”
 - Emigration and overheating of sediment (in intertidal) are two problems that need to be considered in selection of site and technology used
 - Best technology includes effective containment to prevent emigration => bottom trays or boarded raceways
 - Needs to be stressed!!!
 - Probably cannot grow in intertidal zone from Cape Cod to south
Concluding Thoughts

- Razor clams are a viable alternative species for shellfish farmers in the northeast
 - Good price/market
 - Encouraging growth rate
 - Relatively simple (and common) culture technology

- Still have some bugs to work out in
 - post-set nursery to achieve adequate seed supply for growers
 - growout methods

- Need to consider fishery management
 - Topic of discussion for towns
Thank – You!!

- Participating MA towns
- Grower partners
- ARC – Dick Kraus and ‘crew’!
- Dale Leavitt – RWU
- Funding assistance – NRAC, SEMAC, CCCE, WHSG, DAR