Oyster Farming

Diane Murphy¹,², Josh Reitsma¹,², Abigail Franklin¹,²
¹Cape Cod Cooperative Extension
²Woods Hole Sea Grant

Chris Linder, chrislinder.com
Class Outline

- Overview of grow-out
- Review of systems
 - Bottom planting
 - Rack and Bag
 - Trays
 - Baskets
 - Floating Bags
- Grading, Splitting and Tumbling
- Fouling
- Disease
- Winter Considerations
- Harvest Methods
- Bag Designs and Construction Techniques
- Guest Speakers
Guest Speakers

- Dave Ryan – Barnstable
 Cape Cod Oyster Company (1993)

- Ed Janiunas – Duxbury
 Sweetheart Creek Oyster Co. (2016)

- Kirsten Friedrich – Orleans
 Skaket Beach Oyster Farm
Field Grow-Out

- Raise oysters to market size
- Attempt to:
 - Keep oysters alive
 - Maximize growth
 - Induce preferred shape (deep cup, fan shape)
- Options:
 - Bottom culture
 - Suspended culture
 - Off-bottom culture
- Threat of ice requires a plan
New England Oyster Growing Cycle

- 18+ months to grow 2018 crop
- 18+ months to grow 2019 crop
- Selling 2017 crop
- Selling 2018 crop

2018 2019

Sold out

Graphic modified from Pangea website
Production Cycle

- **Year One**
 - Nursery of Year One
 - Moved to field
 - Nursery of Year Two
 - Moved to field
 - Field culture of Year One

- **Year Two**
 - Nursery of Year Two
 - Moved to field
 - Field culture of Year One

- **Year Three**
 - Nursery of Year Three
 - Moved to field
 - Field culture of Year Two
 - Field culture of Year One
 - Harvest of Year One

- **Year Four**
 - Nursery of Year Four
 - Moved to field
 - Field culture of Year Three
 - Field culture of Year Two
 - Harvest of Year Two
 - Continued harvest of Year One?
To Raise 100,000 Oysters/Year

- **Year One**
 - Buy & nursery 100,000 2 mm seed
 - End of year, 100 bags of 1,000 Yr 1 seed
 - ~16 racks

- **Year Two**
 - Buy & nursery 100,000 2 mm seed
 - End of year, 100 bags of 1,000 Yr 2 seed
 - ~16 racks
 - In spring, divide Yr 1 seed into 500 bags of 200 oysters each
 - ~84 racks

- **Year Three**
 - Buy & nursery 100,000 2 mm seed
 - End of year, 100 bags of 1,000 Yr 3 seed
 - ~16 racks
 - In spring, divide Yr 2 seed into 500 bags of 200 oysters each
 - ~84 racks
 - Across year, raise Yr 1 seed
 - ~68 racks
 - Harvest as ready
What Would that Cost?

Year One
- Buy & nursery 100,000 2 mm seed = $1,200
- End of year, 100 bags of 1,000 Yr 1 seed (assuming 2 size mesh bags) = $840
 - ~16 racks = $2,240

Year Two
- Buy & nursery 100,000 2 mm seed = $1,200
- End of year, 100 bags of 1,000 Yr 2 seed (assuming 2 size mesh bags) = Re-use Year One
 - ~16 racks = Re-use Year One
- In spring, divide Yr 1 seed into 500 bags of 200 oysters each = $2,100
 - ~84 racks = $11,760

Year Three
- Buy & nursery 100,000 2 mm seed = $1,200
- End of year, 100 bags of 1,000 Yr 3 seed (assuming 2 size mesh bags) = Re-use Year One
 - ~16 racks = Re-use Year One
- In spring, divide Yr 2 seed into 500 bags of 200 oysters each = $2,100
 - ~84 racks = $11,760
- Across year, raise Yr 1 seed
 - Harvest as ready
 - Assume 80% survival
 - Wholesale price of $0.60
 - = +$48,000
- Three Year Net, without labor = ($48,000 – $36,000) = $13,600 or $4,533/yr
Oysters

<table>
<thead>
<tr>
<th>Number</th>
<th>Seed Price/1000</th>
<th>Yr to maturity</th>
<th>Per Bag</th>
<th>Bags/rack</th>
<th>Bags needed</th>
<th>Racks needed</th>
<th>Bag cost each</th>
<th>Rack cost each</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>$3,500.00</td>
<td>2</td>
<td>150</td>
<td>6</td>
<td>67</td>
<td>111</td>
<td>$7.25</td>
<td>$67.00</td>
</tr>
</tbody>
</table>

Survival Rate
- To Market: 75%
- Gross: $41,250.00
- Net: $25,472.22

Pay rate
- Market Price: $25.00
- Prep and maint: 20 min/K
- Harvest: 20 Min/K

Year by year, 2 year growth cycle
<table>
<thead>
<tr>
<th>Seed</th>
<th>Seed Cost</th>
<th>Prep Labor</th>
<th>Harvest Labor</th>
<th>Harvest</th>
<th>Bags in use</th>
<th>Bags to buy</th>
<th>Racks in use</th>
<th>Racks to buy</th>
<th>Bag cost</th>
<th>Rack cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1,175.00</td>
<td>$416.67</td>
<td>$416.67</td>
<td>$833.33</td>
<td>333</td>
<td>56</td>
<td>333</td>
<td>56</td>
<td>$2,416.67</td>
<td>$3,722.22</td>
</tr>
<tr>
<td>2</td>
<td>$2,350.00</td>
<td>$833.33</td>
<td>$1,666.67</td>
<td>$667</td>
<td>607</td>
<td>111</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$3,525.00</td>
<td>$1,250.00</td>
<td>$2,500.00</td>
<td>$1,000</td>
<td>607</td>
<td>167</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$4,700.00</td>
<td>$1,666.67</td>
<td>$3,333.33</td>
<td>$1,333</td>
<td>607</td>
<td>222</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$5,875.00</td>
<td>$2,083.33</td>
<td>$4,166.67</td>
<td>$1,667</td>
<td>667</td>
<td>278</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$7,050.00</td>
<td>$2,500.00</td>
<td>$4,999.99</td>
<td>$2,000</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$8,225.00</td>
<td>$2,916.67</td>
<td>$5,832.79</td>
<td>$2,500</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$9,400.00</td>
<td>$3,333.33</td>
<td>$6,666.66</td>
<td>$3,000</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$10,575.00</td>
<td>$3,750.00</td>
<td>$7,500.00</td>
<td>$3,500</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$11,750.00</td>
<td>$4,166.67</td>
<td>$8,333.33</td>
<td>$4,000</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year by year, 1 year growth cycle
<table>
<thead>
<tr>
<th>Seed</th>
<th>Seed Cost</th>
<th>Prep Labor</th>
<th>Harvest Labor</th>
<th>Harvest</th>
<th>Bags in use</th>
<th>Bags to buy</th>
<th>Racks in use</th>
<th>Racks to buy</th>
<th>Bag cost</th>
<th>Rack cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1,175.00</td>
<td>$416.67</td>
<td>$416.67</td>
<td>$833.33</td>
<td>333</td>
<td>56</td>
<td>333</td>
<td>56</td>
<td>$2,416.67</td>
<td>$3,722.22</td>
</tr>
<tr>
<td>2</td>
<td>$2,350.00</td>
<td>$833.33</td>
<td>$1,666.67</td>
<td>$667</td>
<td>607</td>
<td>111</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$3,525.00</td>
<td>$1,250.00</td>
<td>$2,500.00</td>
<td>$1,000</td>
<td>607</td>
<td>167</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$4,700.00</td>
<td>$1,666.67</td>
<td>$3,333.33</td>
<td>$1,333</td>
<td>607</td>
<td>222</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$5,875.00</td>
<td>$2,083.33</td>
<td>$4,166.67</td>
<td>$1,667</td>
<td>667</td>
<td>278</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$7,050.00</td>
<td>$2,500.00</td>
<td>$4,999.99</td>
<td>$2,000</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$8,225.00</td>
<td>$2,916.67</td>
<td>$5,832.79</td>
<td>$2,500</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$9,400.00</td>
<td>$3,333.33</td>
<td>$6,666.66</td>
<td>$3,000</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$10,575.00</td>
<td>$3,750.00</td>
<td>$7,500.00</td>
<td>$3,500</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$11,750.00</td>
<td>$4,166.67</td>
<td>$8,333.33</td>
<td>$4,000</td>
<td>667</td>
<td>333</td>
<td>$4,833.33</td>
<td>$7,444.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fixed Costs

Truck Fuel	$1,715.00
Oil Repairs	$27.00
Maintenance Loan Payments	$655.00
Tires	$185.00
Insurance	$371.00
Parking	$125.00
Total	$1,833.00

Boat Fuel	$177.00
Oil	$22.00
Boat Repairs and maintenance	$275.00
Tires	$85.00
Mooring Fees and maint. Dockage	$150.00
Paint	$125.00
Total	$1,091.50

Boll	$55.00
Oil	$275.00
New Boll	$330.00
Total	$1,091.50

Harvest Gear Rakes	$450.00
Baskets and similar	$110.00
Coolers	$500.00
Total	$1,160.00

Personal Gear Boots	$258.00
Gloves	$110.00
Clothing	$255.00
Foul Weather Gear	$175.00
Total	$788.00

Auxiliary Gear Pumps	$225.00
Repairs and maint. Generators	$90.00
Total	$315.00

Miscellaneous costs Bookkeeping	$650.00
Permits and fees	$435.00
Office expense	$450.00
Total	$1,535.00
Production considerations

- 80% survival requires a great deal of attention and time
 - No guarantees, especially with disease

- Time to harvest depends greatly upon location and stock

- Cost of boat, trailer, motor, harvest gear, bags, tags, etc. are not included

- Cost of permits not included

- Don’t forget your labor……
Seed Source: Hatchery

- Hatchery Seed
 - 2 – 20mm range of choices
 - 2mm ($11.25/1,000)
 - 1 million oysters weigh ~4lbs
 - 11 – 16mm (R8) field plant size ($39/1,000)
Natural set...spat on shell or “hats”

- Rely on ‘Mother Nature’
 - she’s often unreliable
 - year-to-year variability
- Cannot select for qualities such as fast growth or disease resistance
- Often clumps or overset instead of singles
Often Start With a Nursery System
Upweller Basics

Inflow

Outflow

Plastic Cylinder

Water Level

Juvenile Shellfish

Micromesh Screening

Fundamentals of Shellfish Farming
Oyster Farming 4 April 2019
Shellfish eat microscopic plants, called phytoplankton, found in the ocean’s waters.

Shellfish farmers tend their crops, but do not add medications or antibiotics.
Bottom Culture

- Oysters are spread out on the seafloor and allowed to grow

David Grossman, gurnetroad.com
Bottom Culture

Photo Credits: peter.hobbs

Chris Linder, chrislinder.com
Bottom Culture

- Harvest often done by dragging
- Nursery gear is retrieved and stored on-shore for the winter
 - Labor-intensive
 - Chance to remove fouling
 - Eliminates ice-damage risk
Bottom Culture

- Inexpensive
- Potential losses to predators and/or burial
- Space inefficient
- Need some form of nursery
- Potentially nicer shaped oysters
- Heavier shells?
 - Slower growth?

Chris Linder, chrislinder.com
Bottom Culture

- Fences/barriers have been used
 - Intertidal and subtidal
 - Cost-effectiveness increases as enclosed area increases
Bottom Culture – Bags
Off-Bottom: Floating Bags on Sand

- Relatively inexpensive
- Flotation keeps sand out of bags
- Motion should improve shape and overall growth
- Bit hard on the back
- Must keep an eye on the lines and the bags for wear
Floating Bags on Sand
Off-Bottom: Rack & Bag
Rack and Bags

- Typically least expensive off-bottom option
- Require constant handling
- Require attention of leg sinking
- May tip over in high flow or storms
“Off-Bottom”: Rack & Bag
Off-Bottom: Trays

- More expensive than racks
- Units are not as heavy
- Stackable
- Can be stacked high and deployed in deep water
Off-Bottom: Trays - plastic
Trays

Chris Linder, chrislinder.com
Off-Bottom: Trays - wire
Off-Bottom: Wire Cages
Suspended Culture: Baskets

- Expensive
- Swaying motion may improve shape and cup of oysters
- May improve overall growth
- Need to invest in good anchor system
- Need way to keep lines taut as weight increases
- Constant eye on wear and tear
Hanging Baskets
Hanging Baskets – better in areas with more limited wave action
Floating/Surface Culture
Floating/Surface Culture

- **TOP VIEW**
 - Rotational floats
 - Identification floats
 - Spreader bar every 5 bags
 - Suggest 50+50=100 bag grid (or less) for efficiency of handling

- **SIDE VIEW**
 - Water surface
 - Spreader bar
 - OBC bags

- **WINTER or STORM SIDE VIEW**
 - Rotational floats
 - Tension anchor
 - For winter or storm use, attach anchors to one long line only

Images show a floating/surface culture system with diagrams and photos.
Floating Bags
Floating Bags
Suspended Culture

- Higher start up costs
- May increase growth rate
- Fouling can be a problem
- Navigation hazard
- Highly visible
- Allows culture in areas with suboptimal bottom and/or greater depth
Floating Cages

- Considerations
 - Visibility
 - Accessibility
 - boat
 - Lines
 - entanglement risk
 - Depth of water
 - Flipping
 - Re-submergence time?
 - Fouling
Floating Oyster Cages
Floating Oyster Cages
Floating Oyster Culture

- Some systems allow winter deployment at depth

 Optimum Growth
 - Maintains level, steady submerged position at the ideal feeding depth.
 - Minimizes shifting to maintain ideal distribution for feeding.

 Easy Sink
 - Floats keep oysters off the bottom and out of the mud.
 - Substantially reduces winter mortality rate.
Research Farm Network 2011-2012
Comparison of Floating vs Bottom Cages
Increased growth and survival near the surface
Additional Considerations

- Tumbling, splitting and grading
- Cleaning of fouling organisms and removal of pests
- Staying ahead of disease
- Overwintering – finding a solution
Tumbling

- Removes papery edges
- Promotes deeper cup
- Can also remove barnacles and other fouling organisms
- Many tumblers allow oysters to be graded by size
Splitting

- Volume increases exponentially when the oysters are growing
- To alleviate crowding, oysters must be split
- Opportunity to move up mesh size
- Opportunity to cycle gear
- If gear and time allow, split to final stocking density as soon as possible
Grading

- Grading by size can be done through production cycle
 - Appears to improve overall growth
- Grading before harvest
 - Minimum legal size
 - Opportunity to set a higher standard for market oysters
Mechanical Grading
Cleaning Fouling

- Fouling organisms slow growth and reduce marketability
- Cleaning can be done by hand, dipping or with a power washer
- May also use tidal exposure to reduce fouling
- Catch it early!
Disease

- MSX, Dermo – Mortality tends to increase with age
 - Therefore, harvesting the oyster as soon as it’s legal and marketable should reduce risk

- JOD – Affects first year seed, especially slow growers
 - Therefore, get seed larger sooner (either by purchase or nursery methods)

- Ongoing development of resistant lines of oysters
Overwintering

- Want to avoid ice damage to both oysters and gear
- Overwinter wet or dry?
Dry Winter Storage: Seed ‘Pits’

- Oysters are pitted in ~December (before ice), where they are kept:
 - Cold (~35 F), and
 - Humid (~95% relative humidity).

- Oysters are brought back out to the farm in ~March (after ice) where survival is often over 90%.

- Does not appear to have long term effect on growth

- Survival drops after first winter

Chris Linder, chrislinder.com
Dry Winter Storage: Seed ‘Pits’

- Eliminates threat of ice to gear and seed
- Kills off some fouling organisms
- May miss a late winter/early spring set of barnacles or mussels
- Can be very labor-intensive
Wet Winter Storage: Deep Water

- Where oysters are threatened by ice, they may be moved to deeper water where ice will not be a problem.
- This may involve extra permitting and require approval from multiple licensing authorities.
- Need to be aware of bottom type and risk of siltation.
Harvest Methods

- Often done by hand or by rake
- Hand selected from bags, baskets, trays
- Sometimes done by drag
Next Week

- Clams!
 - Aka quahogs
- Field Planting,
 - Grow out &
 - Harvest
- Guest Speaker
 - John Milliken